Vertical federated learning is a trending solution for multi-party collaboration in training machine learning models. Industrial frameworks adopt secure multi-party computation methods such as homomorphic encryption to guarantee data security and privacy. However, a line of work has revealed that there are still leakage risks in VFL. The leakage is caused by the correlation between the intermediate representations and the raw data. Due to the powerful approximation ability of deep neural networks, an adversary can capture the correlation precisely and reconstruct the data. To deal with the threat of the data reconstruction attack, we propose a hashing-based VFL framework, called \textit{HashVFL}, to cut off the reversibility directly. The one-way nature of hashing allows our framework to block all attempts to recover data from hash codes. However, integrating hashing also brings some challenges, e.g., the loss of information. This paper proposes and addresses three challenges to integrating hashing: learnability, bit balance, and consistency. Experimental results demonstrate \textit{HashVFL}'s efficiency in keeping the main task's performance and defending against data reconstruction attacks. Furthermore, we also analyze its potential value in detecting abnormal inputs. In addition, we conduct extensive experiments to prove \textit{HashVFL}'s generalization in various settings. In summary, \textit{HashVFL} provides a new perspective on protecting multi-party's data security and privacy in VFL. We hope our study can attract more researchers to expand the application domains of \textit{HashVFL}.
translated by 谷歌翻译
Vertical federated learning (VFL) is an emerging paradigm that enables collaborators to build machine learning models together in a distributed fashion. In general, these parties have a group of users in common but own different features. Existing VFL frameworks use cryptographic techniques to provide data privacy and security guarantees, leading to a line of works studying computing efficiency and fast implementation. However, the security of VFL's model remains underexplored.
translated by 谷歌翻译
This paper asks the intriguing question: is it possible to exploit neural architecture search (NAS) as a new attack vector to launch previously improbable attacks? Specifically, we present EVAS, a new attack that leverages NAS to find neural architectures with inherent backdoors and exploits such vulnerability using input-aware triggers. Compared with existing attacks, EVAS demonstrates many interesting properties: (i) it does not require polluting training data or perturbing model parameters; (ii) it is agnostic to downstream fine-tuning or even re-training from scratch; (iii) it naturally evades defenses that rely on inspecting model parameters or training data. With extensive evaluation on benchmark datasets, we show that EVAS features high evasiveness, transferability, and robustness, thereby expanding the adversary's design spectrum. We further characterize the mechanisms underlying EVAS, which are possibly explainable by architecture-level ``shortcuts'' that recognize trigger patterns. This work raises concerns about the current practice of NAS and points to potential directions to develop effective countermeasures.
translated by 谷歌翻译
最近,知识表示学习(KRL)正在作为对知识图(kgs)处理查询的最新方法的出现,其中kg实体和查询被嵌入到一个潜在空间中,以使回答查询的实体是嵌入在查询附近。然而,尽管对KRL进行了深入的研究,但大多数现有研究要么侧重于同质KG,要么承担kg完成任务(即缺失事实的推断),同时回答对具有多个方面的kgs的复杂逻辑查询(多视图kg)仍然是一个开放的挑战。为了弥合这一差距,在本文中,我们提出了罗马,这是一个新颖的KRL框架,用于回答多视图KGS的逻辑查询。与先前的工作相比,罗姆人在主要方面离开。 (i)它将多视图kg建模为一组覆盖子kg,每个kg对应于一种视图,该视图集成了文献中研究的许多类型的kg(例如,颞kg)。 (ii)它支持具有不同关系和视图约束的复杂逻辑查询(例如,具有复杂的拓扑和/或从多个视图中); (iii)它比例扩大到大小(例如,数百万个事实)和细粒状视图(例如,数十个观点); (iv)它概括地查询训练过程中未观察到的结构和kg观点。对现实世界KGS的广泛经验评估表明,\系统明显优于替代方法。
translated by 谷歌翻译
了解神经网络的决策过程很难。解释的一种重要方法是将其决定归因于关键特征。尽管提出了许多算法,但其中大多数仅改善了模型的忠诚。但是,真实的环境包含许多随机噪声,这可能会导致解释中的波动。更严重的是,最近的作品表明,解释算法容易受到对抗性攻击的影响。所有这些使解释很难在实际情况下信任。为了弥合这一差距,我们提出了一种模型 - 不稳定方法\ emph {特征归因}(METFA)的中位数测试,以量化不确定性并提高使用理论保证的解释算法的稳定性。 METFA具有以下两个函数:(1)检查一个特征是显着重要还是不重要,并生成METFA相关的映射以可视化结果; (2)计算特征归因评分的置信区间,并生成一个平滑的图表以提高解释的稳定性。实验表明,METFA提高了解释的视觉质量,并在保持忠诚的同时大大减少了不稳定。为了定量评估不同噪音设置下解释的忠诚,我们进一步提出了几个强大的忠诚指标。实验结果表明,METFA平滑的解释可以显着提高稳健的忠诚。此外,我们使用两种方案来显示METFA在应用程序中的潜力。首先,当应用于SOTA解释方法来定位语义分割模型的上下文偏见时,METFA很重要的解释使用较小的区域来维持99 \%+忠实。其次,当通过不同的以解释为导向的攻击进行测试时,METFA可以帮助捍卫香草,以及自适应的对抗性攻击,以防止解释。
translated by 谷歌翻译
在过去的几年中,短视频在淘宝等电子商务平台上见证了迅速的增长。为了确保内容的新鲜感,平台需要每天发布大量新视频,从而使传统的点击率(CTR)预测方法遇到了该项目冷启动问题。在本文中,我们提出了一种有效的图形引导功能传输系统的礼物,以完全利用加热视频的丰富信息,以补偿冷启动的视频。具体而言,我们建立了一个异质图,其中包含物理和语义链接,以指导从热视频到冷启动视频的功能传输过程。物理链接代表明确的关系,而语义链接衡量了两个视频的多模式表示的接近性。我们精心设计功能传输功能,以使图表上不同Metapaths的不同类型的转移功能(例如,ID表示和历史统计)。我们在大型现实世界数据集上进行了广泛的实验,结果表明,我们的礼品系统的表现明显优于SOTA方法,并在TAOBAO APP的主页上为CTR带来了6.82%的提升。
translated by 谷歌翻译
预测历史姿势序列的人类运动对于机器具有成功与人类智能相互作用的关键。到目前为止已经避免的一个方面是,我们代表骨骼姿势的事实是对预测结果的关键影响。然而,没有努力调查不同的姿势代表方案。我们对各种姿势表示进行了深入研究,重点关注它们对运动预测任务的影响。此外,最近的方法在现成的RNN单位上构建,用于运动预测。这些方法在捕获长期依赖性方面,顺序地并固有地具有困难。在本文中,我们提出了一种新颖的RNN架构,用于运动预测的AHMR(殷勤分层运动复发网络),其同时模拟局部运动上下文和全局上下文。我们进一步探索了运动预测任务的测地损失和前向运动学损失,其具有比广泛采用的L2损耗更多的几何意义。有趣的是,我们将我们的方法应用于一系列铰接物对象,包括人类,鱼类和鼠标。经验结果表明,我们的方法在短期预测中占据了最先进的方法,实现了大量增强的长期预测熟练程度,例如在50秒的预测中保留自然人样的运动。我们的代码已发布。
translated by 谷歌翻译
深度神经网络(DNN)已经证明了他们在各种域中的表现。但是,它提出了社会问题,如果他们适用于涉及有价值的资源分配的敏感域,如教育,贷款和就业,则会引发社会问题。在DNN可靠地部署到这样的敏感域之前,执行公平性测试至关重要,即,尽可能多地生成以发现公平违规的情况。然而,现有的测试方法仍然有限于三个方面:可解释性,性能和概括性。为了克服挑战,我们提出了一个新的DNN公平测试框架,与以前的工作不同于在几个关键方面的内容:(1)可解释 - 它定量解释DNNS的公平违反偏见决定的公平违规; (2)有效 - 它使用解释结果在更少的时间内引导更多样化的情况; (3)通用 - 它可以处理结构化和非结构化数据。在7个数据集中的广泛评估和相应的DNN展示了神经元的优越性。例如,在结构化数据集上,它会产生更多的实例(〜x5.84)并节省更多时间(平均加速度为534.56%),与最先进的方法相比。此外,还可以利用神经元的情况来改善偏置DNN的公平,这有助于构建更公平和值得信赖的深度学习系统。
translated by 谷歌翻译
虽然深入学习模型取得了前所未有的成功,但他们对逆势袭击的脆弱性引起了越来越关注,特别是在部署安全关键域名时。为了解决挑战,已经提出了鲁棒性改善的许多辩护策略,包括反应性和积极主动。从图像特征空间的角度来看,由于特征的偏移,其中一些人无法达到满足结果。此外,模型学习的功能与分类结果无直接相关。与他们不同,我们考虑基本上从模型内部进行防御方法,并在攻击前后调查神经元行为。我们观察到,通过大大改变为正确标签的神经元大大改变神经元来误导模型。受其激励,我们介绍了神经元影响的概念,进一步将神经元分为前,中间和尾部。基于它,我们提出神经元水平逆扰动(NIP),第一神经元水平反应防御方法对抗对抗攻击。通过强化前神经元并削弱尾部中的弱化,辊隙可以消除几乎所有的对抗扰动,同时仍然保持高良好的精度。此外,它可以通过适应性,尤其是更大的扰动来应对不同的扰动。在三个数据集和六种模型上进行的综合实验表明,NIP优于最先进的基线对抗11个对抗性攻击。我们进一步通过神经元激活和可视化提供可解释的证据,以便更好地理解。
translated by 谷歌翻译
恶意软件是跨越多个操作系统和各种文件格式的计算机的最损害威胁之一。为了防止不断增长的恶意软件的威胁,已经提出了巨大的努力来提出各种恶意软件检测方法,试图有效和有效地检测恶意软件。最近的研究表明,一方面,现有的ML和DL能够卓越地检测新出现和以前看不见的恶意软件。然而,另一方面,ML和DL模型本质上易于侵犯对抗性示例形式的对抗性攻击,这通过略微仔细地扰乱了合法输入来混淆目标模型来恶意地产生。基本上,在计算机视觉领域最初广泛地研究了对抗性攻击,并且一些快速扩展到其他域,包括NLP,语音识别甚至恶意软件检测。在本文中,我们专注于Windows操作系统系列中的便携式可执行文件(PE)文件格式的恶意软件,即Windows PE恶意软件,作为在这种对抗设置中研究对抗性攻击方法的代表性案例。具体而言,我们首先首先概述基于ML / DL的Windows PE恶意软件检测的一般学习框架,随后突出了在PE恶意软件的上下文中执行对抗性攻击的三个独特挑战。然后,我们进行全面和系统的审查,以对PE恶意软件检测以及增加PE恶意软件检测的稳健性的相应防御,对近最新的对手攻击进行分类。我们首先向Windows PE恶意软件检测的其他相关攻击结束除了对抗对抗攻击之外,然后对未来的研究方向和机遇脱落。
translated by 谷歌翻译